Organic Compounds and Nomenclature

Organic compounds – carbon containing compounds EXCEPT oxides of carbon, and compounds containing the carbonate ion.

HYDROCARBONS

- contain hydrogen and carbon only.
- are non-polar
- are usually found deep inside the Earth, usually as deposits of natural gas and petroleum – fossil fuels.

Representing a Hydrocarbon:

Molecular formula. Ex: C₄H₁₀ **Structural formula.** Ex:

Condensed Structural formula. Ex:

 $CH_3CH_2CH_2CH_3$

Hydrocarbon Prefixes:

Number of	Root Word
Carbon atoms	
1	meth-
2	eth-
3	prop-
4	but-
5	pent-
6	hex-
7	hept-
8	oct-
9	non-
10	dec

(I) Alkanes:

- saturated hydrocarbons (filled to capacity with H atoms)
- have the general formula C_nH_{2n+2}

Straight-chain alkanes

• named ---ane Ex: methane CH₄

Branched alkanes

- Have lower boiling and melting points than their straight-chain counterparts.
 - Naming: 1. Find the parent chain (longest continuous chain)
 - 2. Number the carbons in the parent chain starting with the end nearest to a branch.
 - 3. Name the branch using the prefix with the end -yl

Ex:

Conformations:

 C-C bonds rotate around their axes to give conformations, which differ only in their bond rotations.

Structural Isomers:

Have the same molecular formulas but their atoms bond in different orders.
 Ex: C₅H₁₂

$$CH_3$$
— CH_2 — CH_2 — CH_3 pentane
 CH_3
 $|$
 CH_3 — CH — CH_2 — CH_3 2-methylbutane

$$\begin{array}{c} CH_3 \\ | \\ CH_3 - C - CH_3 \\ | \\ CH_3 \end{array} \qquad 2,2-dimethylpropane$$

Cycloalkanes:

- The ends of the carbon chain close to form a ring.
- General formula is C_nH_{2n}
- Name is cyclo----ane
 - Ex: cyclopentane

II. Alkenes

- Have one or more double bonds between the carbon atoms
- Are unsaturated
- General formula C_nH_{2n}
- Are named ----ene

Ex: ethene (ethylene) CH₂=CH₂

Ex:

CH₂=CH-CH₂-CH=CH₂ 1,4-pentadiene

III. Alkynes

- Have one or more triple bonds
- Are unsaturated
- General formula C_nH_{n-2}
- Are named –yne

Ex: propyne $CH \equiv C - CH_3$ 2-Butyne $CH_3 - C \equiv C - CH_3$

OTHER ORGANIC COMPOPUNDS:

Hydrocarbon derivatives:

- Contain hydrogen and carbon as well as additional atoms or groups of atoms.
- Are classified depending on their **functional groups**.
- Can be given the general formula R-group where R is the hydrocarbon chain and the group is a particular functional group.
 Even B. Old is the general format for algobals.

Ex: R-OH is the general format for alcohols.