NOMENCLATURE

I. Binary Molecular (covalent) Compounds (2 non-metals)

- Decide the first element in the name (it will also be the first in the formula)
- The first element's name remains unchanged.
- The second element's name gets an —ide ending.
- Both elements get a prefix to denote the number of atoms of that element in the compound

EXCEPT mono is not used in front of the first element.

• When the prefix ends in "a" or "o" and the element name begins with "a" or "o" the final vowel of the prefix is dropped to make pronunciation easier.

Number	Prefix
of Atoms	
1	mono
2	di
3	tri
4	tetra
5	penta
6	hexa
7	hepta
8	octa
9	nona
10	deca

Examples:

Write the name of the following compounds: a) CO b) Cl₂O₇ c) ICl₃

Write formulas for the following compounds: a) dichlorine heptoxide b) sulfur hexafluoride

II. Ionic compounds

Oxidation Numbers

• Represent how many electrons an atom has lost (positive oxidation number) or gained (negative oxidation number) when it is chemically combined with another element.

Rules for oxidation numbers:

- Group IA metals = +1 (always)
- Group IIA metals = +2 (always)

- Group VIA nonmetals = -2 *in binary ionic compounds*
- Group VA nonmetals = -3 in *binary ionic compounds*
- F = -1 (always)
- Cl, Br, I = -1 (except when attached to a more electronegative element: O or F)
- O = -2 (almost always)
- A1 = +3, Zn = +2, Cd = +2, Ag = +1
- H = +1 except when attached to a metal then H = -1.

For ions the sum of the oxidation numbers = the charge on the ion. For neutral molecules the sum of all the oxidation numbers = 0. For elements the oxidation number = 0.

Examples:

Predict the oxidation number for each atom in the following compounds: a) $K_2Cr_2O_7$ b) PO_4^{3-} c) FeH_2

Naming Binary Ionic Compounds (salts) – metal and a non-metal.

• The cation (+) comes first, followed by the anion (-)

A. Metal ions with fixed charges (oxidation numbers)

- See oxidation number rules for the metals with fixed charges.
- The first element's name remains unchanged
- The second element's name gets an —ide ending.

Examples:

Name: a) MgS b) CaCl₂

Give the formulas for: a) aluminum oxide b) lithium oxide c) calcium nitride

B. Metal ions with variable charges (oxidation numbers)

- Are followed by a Roman numeral to denote their charge (new/Stock naming system).
- Older naming system is derived from the Latin element name with an –ous or –ic ending.

+1 (-ous) +2(-ic)	+2 (-ous) +3(-ic)	+2 (-ous) +4 (-ic)
Cu ⁺ copper (I) (cuprous)	Co ²⁺ cobalt (II)	Pb ²⁺ lead (II) (plumbous)
	(cobaltous)	
Cu ²⁺ copper (II) (cupric)	Co ³⁺ cobalt (III) (cobaltic)	Pb ⁴⁺ lead (IV) (plumbic)
Hg ₂ ²⁺ mercury (I)	Fe ²⁺ iron (II) (ferrous)	Sn ²⁺ tin (II) (stannous)
(mercurous)		
Hg ²⁺ mercury (II)	Fe ³⁺ iron (III) (ferric)	Sn ⁴⁺ tin (IV) (stannic)
(mercuric)		

- The first element has the name as shown above.
- The second element gets an —ide ending.

Examples:

Name the following: a) CuO b) NaBr c) AlN d) PbI₄ e) Fe₂O₃ f) Hg₂Cl₂

Give formulas for the following: a) manganese (IV) oxide b) gold (I) sulfide c) plumbous oxide

C. Polyatomic ions

- Charged groups of bonded atoms.
- Do not change their name

Common polyatomic ions:

NH_4^+	ammonium	MnO_4	permanganate
OH-	hydroxide	$C_2H_3O_2$	acetate
H-	hydride	$C_2O_4^{2-}$	oxalate
CN-	cyanide	CrO ₄ ²⁻	chromate
SCN-	thiocyanate	$Cr_2O_7^{2-}$	dichromate

Oxyanions ending in ----ate:

Polyatomic ions containing oxygen and a non-metal

IIIA	IVA	VA	VIA	VIIA
$\mathrm{BO_3}^{3}$	CO_3^{2-}	NO^{3-}		
borate	carbonate	nitrate		
	SiO ₃ ²⁻	PO_4^{3-}	SO_4^{2-}	ClO ₃
	silicate	phosphate	sulfate	chlorate
		AsO_4^{3-}	$\mathrm{SeO_4}^{2-}$	BrO ₃
		arsenate	selenate	bromate
			TeO ₄ ²⁻	IO ₃ -
			tellurate	iodate

Other oxyanions:

- Memorize the –ate oxyanions then change the name according to the number of oxygens.
- The charge on the oxyanion does not change when the number of oxygens is changed.

Prefixes and suffixes for oxyanions

2 oxygens less than	1 oxygen less than	ate ion	1 oxygen more than
ate ion	ate ion		
			ate ion
hypoite	ite	ate	perate
ClO-	ClO_2^{-}	ClO_3^-	ClO_4
hypochlorite ion	chlorite ion	chlorate ion	perchlorate ion

[•] Note: only Cl, Br, and I commonly have all of the oxyanions. B and C only commonly have the —ate ion, the rest of the elements above have the —ate and —ite forms.

Examples of oxyanions:

Name the following: a) PO_3^{3-} b) NO_2^{-} c) TeO_2^{2-} d) IO_4^{-}

Give the formulas for the following: a) bromite ion b) sulfite ion c) silicite ion d) arsenite ion

Acid anions:

- All negative ions with a −2 or −3 charge can form acid anions by adding one or more hydrogens
- Addition of one hydrogen to the anion decreases the charge by one and is named by writing *hydrogen* in front of the anion name.
- Addition of two hydrogens decreases the charge by two and is named by writing dihydrogen in front of the anion name

Example: HPO_4^{2-} is the hydrogen phosphate ion, $H_2PO_4^{-}$ is the dihydrogen phosphate ion

Compounds containing acid anions are called acid salts

Examples of ionic compounds containing polyatomic ions:

Write the formulas for the following: a) calcium hypochlorite b) chromium (III) sulfate c) copper (II) periodate d) sodium sulfite e) barium arsenite f) ammonium chlorite Give the names for the following: a) $Mg(ClO_4)_2$ b) $KHCO_3$ c) $FePO_4$ d) $Mg(H_2PO_4)_2$ e) $Ag_2C_2O_4$ f) $Pb_3(PO_3)_4$

Hydrates:

- An ionic compound containing a fixed number of water molecules
- Name the ionic compound followed by ----hydrate
- Use a prefix to denote the number of water molecules.

Example:

Name the following: a) CaCl₂•6H₂O b) LiClO₄•3H₂O c) MgCO₃•5H₂O

III. Acids and Bases

Arrhenius Definition:

- An acid is a molecular compound that ionizes in water to form a solution containing H⁺ ions and anions.
- A base ionizes in water to give a solution containing OH ions and cations.

Binary Acids:

- When in their natural (gaseous) state, they are named as binary covalent compounds without the prefixes.
- When in an aqueous solution, they behave differently and are named hydro----ic acid.

Example:

Name the following: a) $HF_{(g)}$ and $HF_{(aq)}$ b) $H_2S_{(g)}$ and $H_2S_{(aq)}$ c) $HCl_{(g)}$ and $HCl_{(aq)}$

Oxyacids (acids derived from oxyanions):

- ---ate ions become ---ic acids
- the formula for the acid has as many hydrogens as charges on the oxyanion.

Example: SO_4^{2-} is the sulfate oxyanion. Its oxyacid is H_2SO_4 and is named sulfuric acid.

Note the root name for sulfur derived oxyacids is *sulfur* instead of *sulf*

Prefixes and suffixes for oxyacids:

2 oxygens less than	1 oxygen less than	ic acid	1 oxygen more than
ic acid	ic acid		-ic acid
hypoous acid	ous acid	ic acid	peric acid
HClO	HClO ₂	HClO ₃	HClO ₄
hypochlorous acid	chlorous acid	chloric acid	perchloric acid

Example:

Name the following: a) H₃PO₃ b) HNO₂ c) H₂TeO₂ d) HIO₄

Give formulas for the following: a) bromous acid b) sulfurous acid c) hypoiodous acid

Other acids:

HCN hydrocyanic acid HC₂H₃O₂ acetic acid H₂C₂O₄ oxalic acid

Bases:

- Ionic bases are named as for ionic compounds most are formed from group IA and IIA cations. Many are hydroxides.
- Most bases are molecular. Many of them are ammonia and its compounds.

Ammonia : $NH_{3(g)}$ Ammonia in solution: $NH_{3(aq)}$ or NH_4OH : ammonium hydroxide